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We study the response properties of d-dimensional hypercubic excitable networks to a stochastic stimulus.
Each site, modeled either by a three-state stochastic susceptible-infected-recovered-susceptible system or by
the probabilistic Greenberg-Hastings cellular automaton, is continuously and independently stimulated by an
external Poisson rate h. The response function �mean density of active sites � versus h� is obtained via
simulations �for d=1,2 ,3 ,4� and mean-field approximations at the single-site and pair levels �∀ d�. In any
dimension, the dynamic range and sensitivity of the response function are maximized precisely at the nonequi-
librium phase transition to self-sustained activity, in agreement with a reasoning recently proposed. Moreover,
the maximum dynamic range attained at a given dimension d is a decreasing function of d.
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I. INTRODUCTION

The building blocks of sensory organs are excitable neu-
rons, upon which physical stimuli impinge continuously. In-
formation about these stimuli is transformed into electrical
activity of the neuronal membranes, usually in the form of
nonlinear excitations called spikes. The biophysics of ion
channels involved in this process has been thoroughly inves-
tigated in the last five decades, after the success of the
Hodgkin-Huxley theory �1�. Despite immense progress in
this regard, however, some fundamental questions have re-
mained unanswered. One of them has to do with two appar-
ently conflicting experimental results. On the one hand, ani-
mals are subjected to stimulus intensities spanning many
orders of magnitude, which their brains somehow manage to
handle. This result is perhaps most easily revealed in psycho-
physical experiments. When humans are asked to assign an
arbitrary �psychological� value to a given physical stimulus,
this value is shown to be proportional to a power m of the
stimulus intensity �2� �Stevens’ law of psychophysics�. The
fact that the Stevens’ exponent m is usually �1 is consistent
with the large dynamic range and sensitivity of psychophysi-
cal response functions �for instance, m�0.6 for the smell of
heptane �2��. On the other hand, the response �mean firing
rate� of isolated sensory neurons as a function of stimulus
intensity has been shown to be an approximately linear satu-
rating curve, at least for some sensory modalities. This im-
plies that their dynamic range is usually small �for olfactory
sensory neurons, they stay in the range of �10 dB �3,4��.

How is it then that large dynamic ranges are obtained
from elements which individually have small dynamic
ranges? What is the mechanism that generates Stevens’ ex-
ponents m�1? Two main mechanisms have been historically
recognized as contributing to the phenomenon: one of them
invokes the intrinsic variation of thresholds in a population
of sensory neurons �5�. The second one is adaptation, by
which neurons adjust their operating ranges according to the

statistics of the ambient stimulus �see, e.g., Refs. �6–10� for
the case of the visual system�. Both mechanisms certainly
contribute to an enhancement of dynamic range. However,
recent experimental data strongly suggest that additional
mechanisms based on a collective neuronal phenomenon
could be at play: Deans et al. �11� showed that knocking out
gap junctions �electrical synapses among neurons� leads to a
substantial change in the response function of retinal gan-
glion cells of mammals, with a decrease in dynamic range
and sensitivity �11� and an increase in the response exponent
�12�.

In the last few years we have investigated this third pos-
sible mechanism, which addresses how neurons could coop-
eratively lead to an enhancement of dynamic range owing to
the presence of lateral interactions �e.g., via chemical or elec-
trical synapses�. Connected, they form an extended system in
which excitable waves are created upon incidence of incom-
ing stimuli and annihilated upon collision �either with one
another or with boundaries� due to the nonlinearity of their
dynamics. The overall effect of this process is to collectively
produce an enhancement of dynamic range and sensitivity, as
compared to those of the elements alone �12–18�. We empha-
size that our proposal relies on very basic properties of ex-
citable media, which opens the possibility that it could be
applied not only to sensory systems, but wherever else en-
hanced sensitivity and dynamic range are required. For ex-
ample, extreme sensitivity is observed in rat motor cortex,
where stimulation of a single pyramidal cell can evoke whis-
ker movements �19�. Also potentially related to what we pro-
pose is the experimental observation that electrical synapses
in the neocortex are present exclusively between inhibitory
interneurons �20�. Electrical coupling allows them to excite
each other �20� and might have the functional role of aug-
menting their dynamic range and sensitivity.

The mechanism we discuss here is simple: let the arrival
of a suprathreshold stimulus reaching a sensory neuron be
modeled by a Poisson process with rate h, which would be
proportional to the stimulus intensity �say, the concentration
of an odorant reaching the olfactory epithelium�. For very
small h, stimulus events are rare and each of them would
produce on average one excitation, if the excitable elements
were disconnected. If they are connected, however, excita-
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tions can propagate stochastically to neighbors at some rate
�. In this case, a single-stimulus event will generate an am-
plifying excitable wave. If � is small, this wave will die out
after some time, but the average network activity � will
nonetheless be larger than that of uncoupled neurons, leading
to an enhanced sensitivity and larger dynamic range. This
amplifying effect becomes more pronounced as � increases,
so the dynamic range initially increases with �. Increasing �
further, however, one may reach a phase transition at some
critical value �=�c, above which self-sustained activity be-
comes stable ���h=0;���c��0�. In this supercritical re-
gime, the larger the coupling �, the more difficult it becomes
for � to code for weak stimuli, which can hardly be distin-
guished from the self-sustained background activity of the
network. Therefore, for ���c the dynamic range decreases
with increasing �. Putting those two results together, one
concludes that the dynamic range is maximum at criticality
�16�.

Clearly, the above reasoning applies to essentially any
network topology. In its original version �16�, it was formu-
lated for an Erdős-Rényi random graph, where a simple
mean-field model perfectly captured the phenomenon. How-
ever, the enhancement of the dynamic range in that topology
was about 50%, which is much less than what is observed
experimentally �for instance, dynamic ranges in the olfactory
glomerulus are at least twice as large as in olfactory sensory
neurons �21,22��. This raises the question whether networks
with different topologies could yield larger dynamic ranges
and, if so, how these depend on network structural param-
eters. In Ref. �18�, for instance, the dynamic range of scale-
free networks was shown to depend on the density of loops,
but the evidence relied only on numerical simulations. In this
contribution, we make use of simulations and analytical
methods to deal with this question in hypercubic lattices,
looking at the dimension d as a parameter.

II. MODEL AND SIMULATION RESULTS

We explore these ideas within a simple stochastic model
of pulse-coupled excitable elements:

Ṗt�Sx� = − hPt�Sx� − ��
y

Pt�Sx,Iy� + �Pt�Rx� , �1�

Ṗt�Ix� = − Pt�Ix� + ��
y

Pt�Sx,Iy� + hPt�Sx� , �2�

Ṗt�Rx� = − �Pt�Rx� + Pt�Ix� , �3�

where Pt��x� is the probability that site at location
x� �1, . . . ,N	 is in state � at time t; Pt��x ,�y� is the joint
probability that sites at locations x and y are, respectively, in
states � and � at time t; � ,�� �S , I ,R	 denote a quiescent,
excited, or refractory state, respectively; y runs over the
neighborhood of x; and �−1 is the characteristic refractory
time, measured in units of the characteristic excitation time
�defined as 1, without loss of generality �23��. We employ the
notation of the stochastic susceptible-infected-recovered-
susceptible �SIRS� model, to which this model is identical

except for the external-stimulus field h, which is often miss-
ing in epidemiological modeling �where it amounts to a
spontaneous infection rate �24��. We can therefore extend a
previous analysis of the stochastic SIRS model on a hyper-
cubic lattice by Joo and Lebowitz �23�, from which our re-
sults can be derived if the external field h is added as in Eqs.
�1�–�3�.

We are interested in the response function �or transfer
function� of the excitable medium—i.e., the dependence of
the stationary density of active sites �
 limt→	 Pt�I� on the
external stimulus intensity h �note that, in the context of
neuroscience, the mean firing rate can be obtained by divid-
ing � by the mean excitation time�. Figure 1 shows simula-
tion results which confirm the general scenario described
above. For �=1 �which is kept fixed throughout this paper�
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FIG. 1. Response curves ��h� of the stochastic SIRS model on a
two-dimensional lattice �results from simulations with N=1002

sites, periodic boundary conditions, averaged over a maximum time
Tmax�104–106 and five runs� in �a� linear-log scale and �b� log-log
scale. From bottom to top, triangles denote �=0,0.2, . . . ,1. Solid
circles denote ���c. Relevant parameters for calculating the dy-
namic range 
 are exemplified in �a� for �=1 �solid triangles�. �b�
Dot-dashed lines show literature values for the critical exponent
�h

−1. Inset: response function near criticality for d=1, 3, and 4 �sys-
tem sizes and approximate critical coupling are N=5000 and �c

�7.73�8�, N=203 and �c�0.259�3�, and N=104 and �c

�0.167�2�, respectively�.
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and d=2, a phase transition occurs at �=�c�0.567�2�. In
the subcritical regime ����c� ��h� is a linear-saturating
curve whose slope increases monotonically with �. In the
supercritical regime ����c� one has �0
 limh→0 ��h��0,
with �0 increasing monotonically with � �23�.

To obtain the dynamic range of the response curve, we
employ the definition usually adopted in the biological litera-
ture �3,4�. Let h0.1 and h0.9 be the stimulus intensities such
that their corresponding responses ��0.1 and �0.9� are, respec-
tively, 10% and 90% above the base-line activity within the
range ��0 ,�max�:

�� 
 �0 + ���max − �0� , �4�

where ��h��
��, �max
 limh→	 ��h�=� / ��+1�, and
�� �0.1,0.9	. The dynamic range 
 is defined as


 
 10 log10�h0.9

h0.1
� . �5�

As depicted in Fig. 1�a�, 
 amounts to the range of stimulus
intensities �measured in dB� that can be appropriately coded
by the average activity in the network, discarding stimuli
whose responses are too close either to base-line activity
����0.1� or to saturation ����0.9�.

According to this standard definition, the dynamic range
of the response curves in Fig. 1�a� shows the predicted be-
havior: for ���c ����c�, 
��� is a monotonically increas-
ing �decreasing� function. As shown in Fig. 2, the maximum
dynamic range occurs precisely at criticality, where the re-

sponse function is governed by the scaling relation ��h�h
−1

.

In all our simulations, the observed critical exponent �h
−1 is

compatible with the literature values for the directed perco-
lation �DP� universality class: namely, �h

−1=0.111, 0.285,
0.45, and 1/2 for d=1, 2, 3, and d4, respectively �25–27�
�see inset of Fig. 1�b��. This should be expected, since the
model has local rules, a continuous transition to a unique
absorbing state, and no further conservation laws �24,28–30�.
Because the exponent �h

−1 increases with increasing d and
since it is the key element governing the dynamic range at
criticality, we come to one of the main results of this paper:
the maximum dynamic range attained at a given dimension d
is a decreasing function of d. This result is summarized in
Fig. 3, which exhibits the peaks of Fig. 2 versus the dimen-
sion of the lattice.

We further note that similar results are obtained if one
employs the Greenberg-Hastings cellular automaton
�GHCA�, where now the state transition S→ I is controlled
by probabilities ph �external stimulus� and p� �coupling�, I
→R by p� and R→S by p� �31�. The only difference occurs
for the particular case of excitations with a deterministic du-
ration �p�=1� in d=1, in which case self-sustained activity
cannot be stable and the maximum dynamic range occurs for
p�=1 with an anomalous response exponent 1/2, as previ-
ously reported �12� �see stars in Fig. 3�. Note that p�=1
seems biologically more realistic for neurons: while coupling
may be stochastic, the duration of a spike is generally well
described by a deterministic dynamics. For p��1 and d=1 a
phase transition can occur just like in the SIRS model, and in
this case 
��c� is again a monotonically decreasing function
of d �as exemplified for p�=0.5; see squares in Fig. 3�.
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FIG. 2. Dynamic range vs coupling: simulation results �symbols�, 1S �thin dashed line�, and 2S �thick dashed line� mean-field approxi-
mations. The peaks occur always at the phase transition. Half-widths of tuning of the critical regime �with heights measured relative to

��=0�� are 
��1.4, 0.094, 0.059, and 0.042 for d=1, 2, 3, and 4, respectively.
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III. MEAN-FIELD RESULTS

A. Single-site approximation

The remainder of this paper focuses on the possibilities of
understanding these results with analytical means. Clearly,
solving Eqs. �1�–�3� for ��0 is difficult, because the dynam-
ics of single-site probabilities Pt��x� depend on two-site joint
probabilities Pt��x ,�y�, which in their turn depend on
higher-order terms and so forth. The simplest way to truncate
this infinite hierarchy of equations is the single-site �1S�
mean-field approximation, in which correlations are ne-
glected �23,24�. The conditional probabilities are approxi-

mated as Pt��x�y��
1S

Pt��x�, which implies that m-site joint

probabilities get factorized as P��x1

�1� , . . . ,�xm

�m���
1S

� j=1
m Pt��xj

�j��,
where ��j�� �S , I ,R	. In this approximation, assuming homo-
geneity and isotropy, Eqs. �1�–�3� reduce to a closed system
and one obtains

��h�=
1S��max

2�
���max

−1 h + 1 − ��

��− 1 +�1 +
4��max

−1 h

��max
−1 h + 1 − ��2� . �6�

Note that information about the dimension d of the network
is absorbed into an effective branching parameter �
�z,
where z
2d is the number of neighbors each site has. When
�→0, we obtain a linear saturating response ��h�
=�maxh / ��max+h�, which is an exact result for uncoupled ex-
citable elements. If h→0, Joo and Lebowitz’s 1S results are
recovered: without an external stimulus, the 1S approxima-
tion predicts a phase transition at �=�c=1 ��=�c=1 /z�,

above which an active phase with �0=�max���−1��0 is
stable �23�. The weak stimulus response is linear in the sub-

critical regime, ��h ;���c��
1S

h / �1−z��. At criticality, how-

ever, it is governed by ��h ;�=�c��
1S

��maxh�1/2, which leads
to the mean-field exponent �h

−1=1 /2. Applying the definition
of Eqs. �4� and �5� to Eq. �6�, one obtains the dynamic range
in the 1S approximation:


���=
1S�10 log10�81�1 − 0.1�

1 − 0.9�
�� �� � 1� ,

10 log10�81�� − 0.1

� − 0.9
�� ��  1� .� �7�

As depicted in Fig. 2, the peak at �=1 is 
��c�
=30 log10 9 dB, which corresponds to an exact 50% en-
hancement as compared to uncoupled elements: 
�0�
=20 log10 9 dB. Not surprisingly, this result holds ∀ d.

B. Pair approximation

To gain analytical insight into the dependence of 
 on d,
we have solved Eqs. �1�–�3� in the so-called pair or two-site
�2S� approximation, in which conditional probabilities are
truncated beyond nearest neighbors: P��x1

�x2
,�x3

�

�
2S

P��x1
�x2

� �this approximation is valid for the hypercubic
lattice because x3 is not a nearest neighbor of x1�. This leads
to three-site joint probabilities being approximated as

P��x1
,�x2

,�x3
��

2S

P��x1
,�x2

�P��x2
,�x3

� / P��x2
�. To arrive at a

closed set of equations, first one has to write down the dy-
namics also for two-site probabilities, which in this case are
a direct extension of Joo and Lebowitz’s equations for h
�0 �23�. These equations �A1�–�A3� can be found in the
Appendix. Applying the 2S approximation to all equations,
one concludes, after some manipulation, that � satisfies a
cubic equation �Eq. �A9��. For h=0 one can obtain the 2S
value of the coupling at which the phase transition occurs:

�c=
2S

��+1� / �2d−2+ �2d−1��� �23�.
Figure 2 shows the dynamic ranges calculated from the

numerically obtained response curves. The 2S approximation
shows a better agreement with simulations than does the 1S
approximation, and Fig. 2 clearly shows how the agreement
improves with increasing d. In particular, note that the 2S
approximation reproduces the inflection in the 
��� curve,
which appears only for d=1 �inset of Fig. 2�a��. Like in the
1S mean-field approximation and in the simulations, the sub-
critical response function for weak stimuli is linear:

��h;� � �c��
2S� � + 1 + ��� + 2�

�2d − 2 + �2d − 1�����c − ���h . �8�

More important for the topic of this article, the 2S approxi-
mation manages to capture the dependence of 
��c� on
d, despite the fact that the weak-stimulus response at the cri-
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tical coupling is still governed by a mean-field exponent:

���c ;d��
2S

K�d�h1/2. In this case, the decreasing function

K�d� =� 4d2��� + 1�2�2d − 1�−1

�3�2d − 1� + �2�6d − 4� + ��6d − 5� + 2d − 1

�9�

correctly incorporates the influence of d on 
��c� �see inset
of Fig. 3�.

The fact that neither the 1S nor 2S approximations can
reproduce the correct critical exponents for d�4 is well
known. Inherent to those mean-field approximations is the
truncation of correlations, which is clearly inconsistent with
the observed divergence of the correlation length � and re-
laxation time � as criticality is approached: ���−�c−��

and ���−�c−��, where ���0 and �� �0 are critical expo-
nents �24�. In our simulations, correlation lengths and relax-
ation times at criticality are limited only by system size. At
criticality also the survival probability P�t� decays as a
power law �as opposed to an exponential fall in the subcriti-
cal regime� �24�, which can lead to long-lived excitation
waves, as illustrated in the single run of Fig. 4. We note that
correlations among cortical neurons several synapses distant
from one another have been experimentally observed �32�
and associated with the propagation of electrical waves �33�.

IV. CONCLUDING REMARKS

We have presented an analysis �with simulations and ana-
lytical results� of the response function of the stochastic
SIRS model on hypercubic lattices. We confirmed that, as
argued in Ref. �16�, the maximum dynamic range is obtained
precisely at the nonequilibrium phase transition where self-
sustained activity becomes stable. Moreover, since the re-

sponse function at criticality is governed by the critical ex-
ponent �h

−1, which for the DP universality class increases
with d, the maximum dynamic range obtained at a given
dimension is a decreasing function of d. We therefore cor-
roborate the claim that networks with spatial organization
may have larger dynamic ranges than the random networks
for which these ideas were first developed �16�.

This suggests the usefulness of low-dimensional arrays of
excitable units for artificial sensor design, as well as raises
speculations regarding the effective dimensionality of living
neural networks. If one admits that large dynamic ranges
could be favored by natural selection, organisms would tend
to have their brains tuned at criticality, and in this case the
mystery of how Stevens’ exponents �1 arise would be
solved: they would just be the critical exponent �h

−1 �16�.
In this context, our theoretical results join a recent flow of

experimental evidence which is compatible with neurons col-
lectively operating in a critical regime �11,34–38�. It is inter-
esting to note that these experiments very often reveal expo-
nents close to mean-field values: for instance, in cultures and
acute slices of rat cortex, spontaneous activity occurs in ava-
lanches whose size distribution decays as a power law with
an exponent 3/2 �34–36�, which is the mean-field result for
branching processes. Also, the response function of retinal
ganglion cells is well fitted by ��h0.58 �11,12�, yielding an
exponent which is remarkably close to the Stevens’ exponent
for light intensity �2� and the DP �h

−1 exponent for d=4. It
would be interesting to investigate whether a small-world
connectivity could conciliate these results, on the one hand
preserving the local order observed in real neural networks
�see �39� for a recent review� while on the other hand allow-
ing for mean-field exponents owing to a small density of
long-range connections.
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APPENDIX: EQUATIONS FOR THE TWO-SITE
APPROXIMATION

As mentioned previously, the equations in Ref. �23� can
be easily extended by including an external field h as fol-
lows:

Ṗt�Sx,Iy� = �Pt�Rx,Iy� − �� + 1 + h�Pt�Sx,Iy� + hPt�Sx,Sy�

+ �
w�Nx�y�

�Pt�Sx,Sy,Iw� − �
w�Ny�x�

�Pt�Iw,Sx,Iy� ,

�A1�

Ṗt�Sx,Ry� = Pt�Sx,Iy� + �Pt�Rx,Ry� − �� + h�Pt�Sx,Ry�

− �
w�Ny�x�

�Pt�Iw,Sx,Ry� , �A2�
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FIG. 4. Active sites vs time in a single run of a small d=1 SIRS
system �one time step is counted every N=200 updates; boundary
conditions are open�. An external stimulus with rate h=10−2 is ap-
plied for 0� t�2000 �h=0 otherwise�. Upper, middle, and lower
panels show the subcritical ��=7.0�, critical ��=7.73�, and super-
critical ��=8.5� regimes, respectively.
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Ṗt�Rx,Iy� = − �� + 1�Pt�Rx,Iy� + Pt�Ix,Iy� + hPt�Rx,Sy� + �
w�Nx�y�

�Pt�Rx,Sy,Iw� , �A3�

where Nx�y� is the neighborhood of y, excluding x. Note that we can omit the equation for Pt�Ix , Iy� because of the normal-
ization condition �APt�Ax ,By�= Pt�By� �the same reasoning applies to Pt�Sx ,Sy� and Pt�Rx ,Ry��. By applying the two-site
approximation to Eqs. �1�–�3� and �A1�–�A3� under homogeneity and isotropy assumptions �23�, as well as the normalization
condition �SPt�Sx�=1, we obtain

Ṗt�S� = � − �� + h�Pt�S� − �Pt�I� − z�Pt�S,I� , �A4�

Ṗt�I� = hPt�S� − Pt�I� + z�Pt�S,I� , �A5�

Ṗt�S,I� = hPt�S� − �� + 1 + 2h�Pt�S,I� − hPt�S,R� + �Pt�R,I� + �z − 1��
Pt�S,I�
Pt�S�

�Pt�S� − 2Pt�S,I���− Pt�S,R�� , �A6�

Ṗt�S,R� = � − �Pt�S� − �Pt�I� + Pt�S,I� − �2� + h�Pt�S,R� − �Pt�R,I� − �z − 1��
Pt�S,I�Pt�S,R�

Pt�S�
, �A7�

Ṗt�R,I� = Pt�I� − Pt�S,I� + hPt�S,R� − �2 + ��Pt�R,I� + �z − 1��
Pt�S,I�Pt�S,R�

Pt�S�
. �A8�

The above equations form a closed system of ordinary differential equations. In its fixed point, �=limt→	 Pt�I� is shown to
satisfy the cubic equation

A1�3 + A2�2 + A3� + A4 = 0, �A9�

where

A1 = �2
ˆ�3�z2�z − 1�� − z� + �2�z�2z2 − 2z − 1�� − 2z − 1� + ��2z�z2 − z − 1�� − 2z − 1� + z��z2 − z − 1�� − 1�	

− h„h2�� + 1�4 + h��5z + �4�z� + 4z + 3� + �3�4z� + 7z + 9� + �2�6z� + 7z + 9� + ��4z� + 4z + 3� + z� + z�

+ ���4�z2� + 2z� + �3�z��3z + 2� + 6z + 3� + 2�2�z�2z + 3�� + 4z + 3� + 3��z�z + 2�� + 2z + 1� + z���z + 2�� + 2��	… ,

�A10�

A2 = �†z�2��2�− 2z�z − 1�� + z + 1� + ��− �3z2 − 4z − 1�� + z + 3� − �2z2 − 3z − 1�� + z + 1	 + h„3h2�� + 1�3

+ h�3�4z + �3�3z� + 11z + 6� + �2�9z� + 16z + 12� + ��9z� + 11z + 6� + 3z� + 3z� + ���3�3z2� + z�z + 4��

+ �2�4z�2z + 1�� + 2z�z + 6� + 3� + ��z�9z + 8�� + 2z�z + 6� + 3� + z�4�z + 1�� + z + 4�	…‡ , �A11�

A3 = �2
†z2�2����z − 1�� − 1� + �z − 2�� − 1	 − h„3h2�� + 1�2 + h�3�3z + �2�3z� + 10z + 3� + ���6z� + 10z + 3� + 3z� + 3z�

+ z���2�3z� + 2�z + 1�� + ���7z + 2�� + 3�z + 2�� + �5z + 2�� + 2�z + 1�	�…‡ , �A12�

A4 = h�3�h2�� + 1� + hz��2 + ��� + 3� + � + 1� + z2����� + 1� + 2� + 1�	 . �A13�

Cardan’s formula yields the solution of Eq. �A9�, from which the dynamic range can be numerically obtained.
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